

Mathematical Modeling of Electrolyzers

Anode : $H_2O \rightarrow 2H^+ + \frac{1}{2}O_2 + 2e^-$ Cathode : $2H^+ + 2e^- \rightarrow H_2$

I I tout I have a

Miguel A. Ridao miguelridao@us.es System Engineering and Automation Department University of Seville

「「「「「「」」」」」

November, 2024

- Introduction
- Mathematical model of PEM electrolyzers
 - Electrochemical models
 - Thermal models
 - Identification
- Efficiency
- Degradation

There is not a unique or simple answer to this question, previously: What are the objectives of my models? What answers do I need from my model? Stack Electrical source Electro-chemic al Models H₂, O₂ H₂₀

Hydraulic

dynamic

Models

Pierre Olivier et al. Low-temperature electrolysis system modelling: A review, Renewable and Sustainable Energy Reviews, Volume 78, 2017

Converters

Models

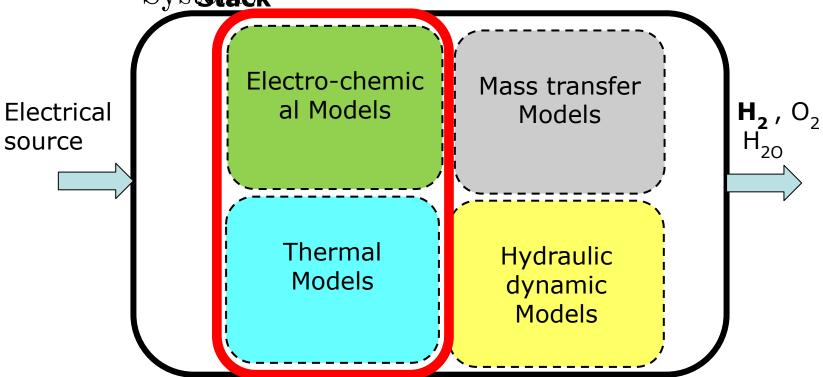
II Workshop INCT CAPE 2024

Thermal

Models

Miguel A

BoP


Models

Components

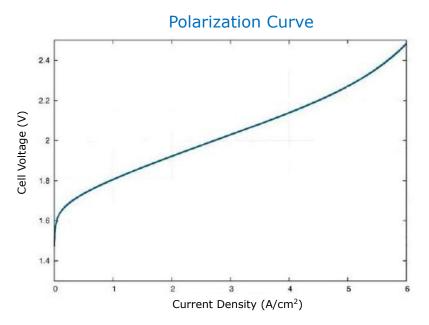
- Model for design and testing of control systems
- Mainly focused on Energy Management Systsmack

Pierre Olivier et al. Low-temperature electrolysis system modelling: A review, Renewable and Sustainable Energy Reviews, Volume 78, 2017

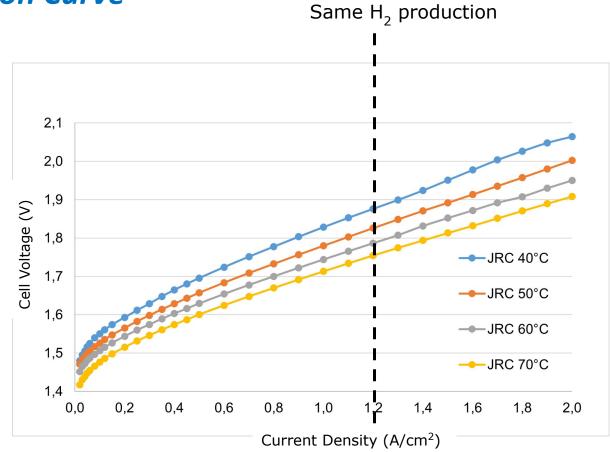
II Workshop INCT CAPE 2024

Introduction

• Mathematical model of PEM electrolyzers


- Static Electrochemical models
- Thermal models
- Identification
- Efficiency
- Degradation

- Model the electrical response of electrolisys cells (and stack) and the produced hydrogen
- □ Simplifications:
 - All the cells have the same electrical and termal behaviour
 - Temperature homogeneity across the stack
 - Oxygen and hydrogen behave as ideal gases. In addition, the gas and liquid phases are separated
 - Electrochemical dynamics can be neglected, so a static model is used (algebraic equation)
 - Drops and pressure effects are neglected



Polarization Curve

Faraday's Law: production rate of hydrogen is proportional to the cell current

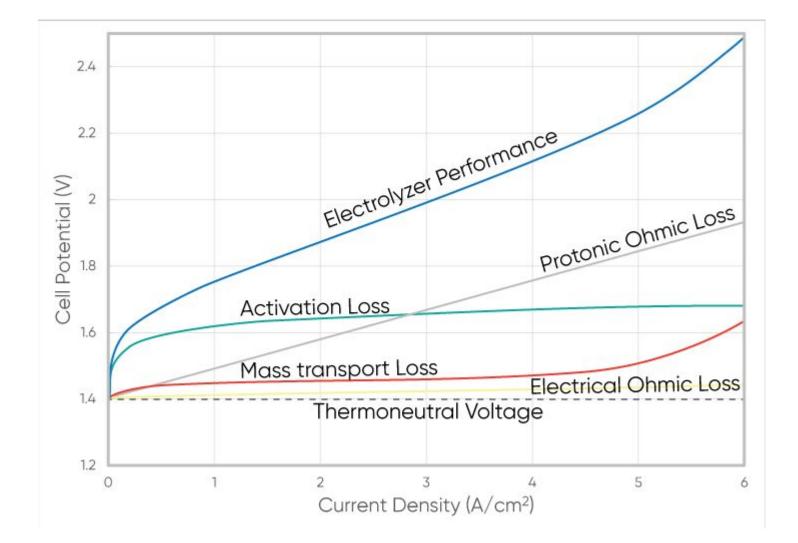
$$\dot{n}_{H_2} = \frac{I_{cell}}{2 F} \eta_F$$

 η_F Faraday Efficiency F Faraday Constant **Voltage equation:** polarization curve

$$V_{cell} = V_{ocv} + V_{act} + V_{ohm} + V_{con}$$

Vocv	Open circuit voltage
V _{act}	Activation overvoltage
V_{ohm}	Ohmic losses overvoltage
V_{con}	Concentration overvoltage
	(mass transport losses)

In a stack with *n cells (in series):*


$$\dot{n}_{H_2} = \frac{n I_{el}}{2 F} \eta_F$$

 $V_{el} = n \left(V_{ocv} + V_{act} + V_{ohm} + V_{con} \right)$

II Workshop INCT CAPE 202

$$V_{cell} = V_{ocv} + V_{act} + V_{ohm} + V_{con}$$

Nernst Equation

$$V_{ocv} = E_0 + \frac{RT_{el}}{2F} \left[\ln \left(\frac{a_{H_2(g)} a_{O_2(g)}^{\frac{1}{2}}}{a_{H_2O(l)}} \right) \right]$$

- T_{el} Temperature of electrolyzer (K)
- *a_i* Activity of substance *i*
- *E*⁰ Reversible voltage (standard conditions)
- *R* Universal Constant of gases (J/ mol K)

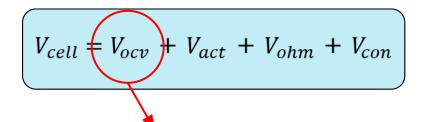
The **Open Circuit Voltage (Nernst or Reversible voltage)** is the lowest potential level that facilitates the electrolysis process

Standard reversible potential E_0 : Typlically experimental equations

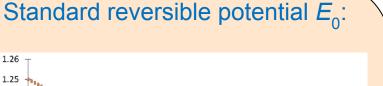
$$E_0 = 1.299 - 085 \cdot 10^{-3} (T_{el} - 298)$$

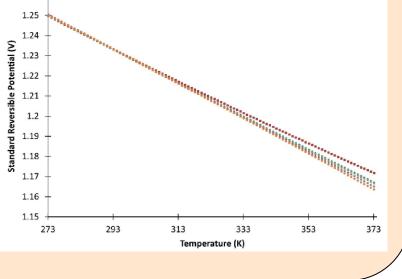
Other expressions for E_0 :

1, 5184 - 1, 5421.10⁻³.
$$T$$
 + 9, 523.10⁻⁵. T . $\ln(T)$ + 9, 84.10⁻⁸. T^2
1, 5241 - 1, 2261.10⁻³. T + 1, 1858.10⁻⁵. T . $\ln(T)$ + 5, 6692.10⁻⁷. T^2
1, 50342 - 9, 956.10⁻⁴. T + 2, 5.10⁻⁷. T^2
1, 229 - 8, 5.10⁻⁴. $(T - 298)$
1, 449 - 0, 0006139. T - 4.592.10⁻⁷. T^2 + 1.46.10⁻¹⁰. T^3


P. Olivier *et al*. Low-Temperatore electrolysis system modelling: A Review. Renewable and Sustainable Energy Reviews 78 (2017)

1.26




The Open Circuit Voltage (Nernst or Reversible voltage) is the lowest potential level that facilitates the electrolysis process

Nernst Equation

$$V_{ocv} = E_0 + \frac{RT_{el}}{2F} \left[\ln \left(\frac{a_{H_2(g)} a_{O_2(g)}^{\frac{1}{2}}}{a_{H_2O(l)}} \right) \right]$$

- Temperature of electrolyzer (K) $T_{\rho I}$
- Activity of substance *i* a_i
- Reversible voltage (standard conditions) E_0
- Universal Constant of gases (J/ mol K) R

P. Olivier et al. Low-Temperatore electrolysis system modelling: A Review. Renewable and Sustainable Energy Reviews 78 (2017)

II Workshop INCT CAPE 2024

$$V_{cell} = V_{ocv} + V_{act} + V_{ohm} + V_{con}$$

Nernst Equation

$$V_{ocv} = E_0 + \frac{RT_{el}}{2F} \left[\ln \left(P_{H_2} \cdot P_{O_2}^{\frac{1}{2}} \right) \right]$$

Activities:

- For hydrogen and oxygen (gases),
 a = p (bar)/p₀, being p₀=
 1 bar
- For water, it approaches 1

The **Open Circuit Voltage (Nernst or Reversible voltage)** is the lowest potential level that facilitates the electrolysis process

Standard reversible potential E_0 : Typlically experimental equations

$$E_0 = 1.299 - 085 \cdot 10^{-3} (T_{el} - 298)$$

Other expressions for E_0 :

1, 5184 - 1, 5421.10⁻³.
$$T$$
 + 9, 523.10⁻⁵. T . $\ln(T)$ + 9, 84.10⁻⁸. T^2
1, 5241 - 1, 2261.10⁻³. T + 1, 1858.10⁻⁵. T . $\ln(T)$ + 5, 6692.10⁻⁷. T^2
1, 50342 - 9, 956.10⁻⁴. T + 2, 5.10⁻⁷. T^2
1, 229 - 8, 5.10⁻⁴. $(T - 298)$
1, 449 - 0, 0006139. T - 4.592.10⁻⁷. T^2 + 1.46.10⁻¹⁰. T^3

P. Olivier *et al*. Low-Temperatore electrolysis system modelling: A Review. Renewable and Sustainable Energy Reviews 78 (2017)

$$V_{cell} = V_{ocv} + V_{act} + V_{ohm} + V_{con}$$

The **Activation Voltage** represents the

voltage needed to overcome the reaction energy barriers to initiate a sufficiently high reaction rate

Simplification of Butler-Volmer Equation

$$V_{act} = V_{act,a} + V_{act,c}$$

$$V_{act,i} = \frac{RT_{el}}{\alpha_i F} \sinh^{-1}\left(\frac{i}{2i_{0,i}}\right), \qquad i = a, c$$

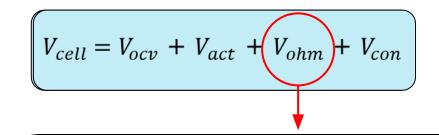
- T_{el} Temperature of electrolyzer (K)
- α_i Charge transfer coeficient
- $i_{0,i}$ Exchange current density
 - Electrolyzer current density

Parameters α_i , $i_{0,i}$

Can be used for electyrolyzer characterization

Typical Values:

- $\alpha_a \approx 2$
- $\alpha_c \approx 0.5$
- *i*_{0,a} [10⁻⁶ 10⁻¹²]
 - $i_{0,c}$ [10⁻⁵ 10⁻¹]


L. Jarvinen *et* al. Automized parametrization of PEM and alkaline water electrolyzer polarization curves. International journal of hydrogen Energy 47 (2022)

II Workshop INCT CAPE 2024

The **Ohmic Voltage** is due to resistances of different types, mainly ionic (electrolyte) and electric

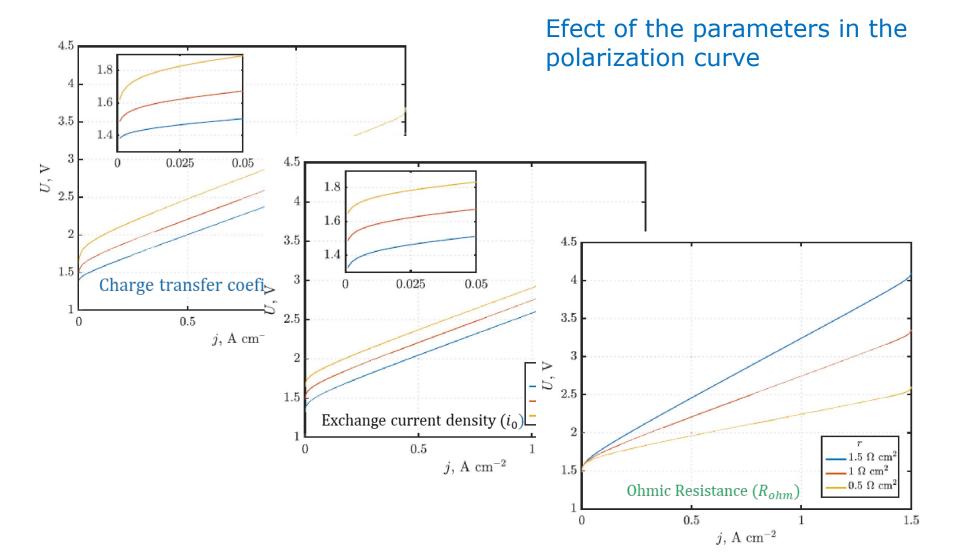
Ohm's Law

$$V_{ohm} = i R_{ohm} = i (R_{elec} + R_{mem})$$

 R_{elec} Electric resistente. Difficult to obtain experimentally. It can be neglected or used as a fit parameter

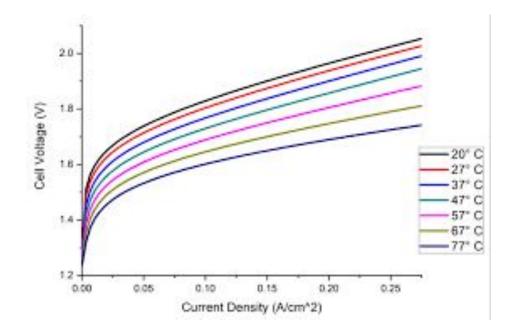
 R_{mem} Ionic resistence. More significant than electric one

Ionic resistence R_{mem} $R_{mem} = \frac{100 t_m}{\sigma_m}$ t_m Membrane thickness σ_m Conductivity $\sigma_m = (0.005139 \lambda_m - 0.00326) e^{1268 \left(\frac{1}{303} - \frac{1}{T_{el}}\right)}$ λ_m Water content of membrane. . Typically in the range 7-14


Springer TE, Zawodzinski TA, Gottesfeld S. Polymer electrolyte fuel cell model. JElectrochem Soc 1991;138:2334–42

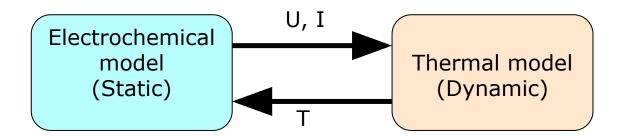
II Workshop INCT CAPE 2024

II Workshop INCT CAPE 2024

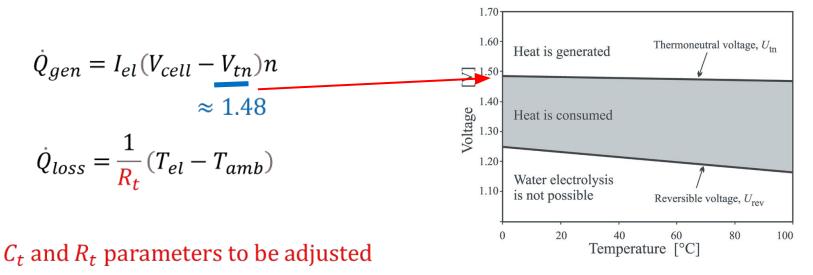

Miguel A.

15

- Temperature has a beneficial impact on the global cell voltage.
- Temperature of the cell(s)/stack(s) appears in most of the electrochemical models presented before.



- Temperature has a beneficial impact on the global cell voltage.
- Temperature of the cell(s)/stack(s) appears in most of the electrochemical models presented before.
- Thermal dynamic is much slower than electrochemical dynamic: Model based on differential equations (ODE or PDE)
- Thermal models are coupled with electrochemical models in order to take into account the influence between electrical response and temperature in cells or stack.



$$C_t \frac{dT_{ez}}{dt} = \dot{Q}_{gen} - \dot{Q}_{loss} - \dot{Q}_{cool}$$

- C_t Thermal capacity of the stack (J / K)
- \dot{Q}_{gen} Heat generated in the system due to the irreversibilities or overvoltages of the process
- \dot{Q}_{loss} Heat that is lost by interaction with the environment by convection and radiation
- \dot{Q}_{cool} Heat that is dissipated by the cooling system

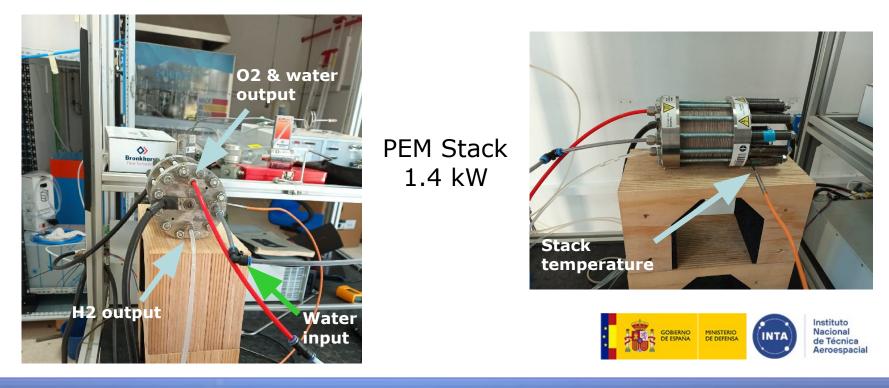
Experimental data for identification & validation

PEM Stack 1.4 kW

Feature Active electrode area Number of cells Max. H₂ production Max. O₂ production Operation temperature Stack voltage (40 bar, 70 °C)

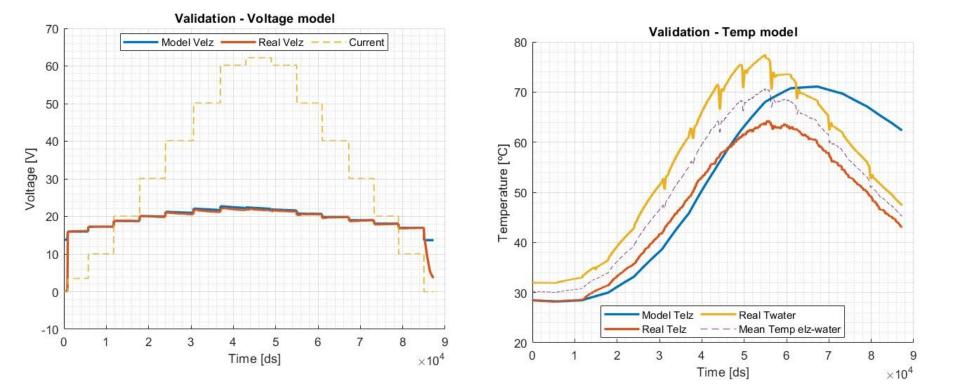
```
Stack current (40 bar, 70 °C)
Connected load (40 bar, 70 °C)
H_2 output pressure
O_2 output pressure
H_2O-flow
H_2O-input pressure
```

Value 28.3 cm² (ø 60 mm) 10 4.4 NI/min (0.26 Nm³/h) 2.2 NI/min (0.13 Nm³/h) 65 - 80 °C approx. 16.3 - 22.3 DCV @ Beginning of Life (BOL) 2.8 - 62.2 A approx. 0.05 - 1.39 kW @ BOL max. 40 bar near ambient min. 2 I/min @BOL max. 1.5 bar

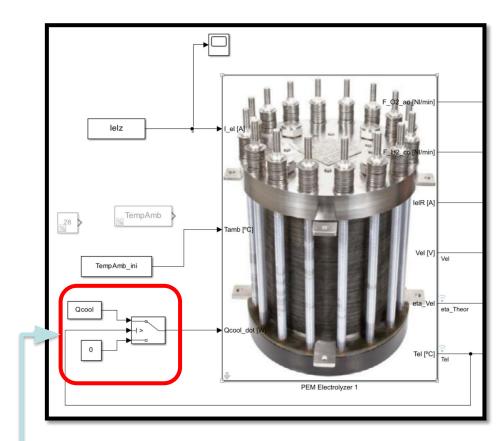


Experimental data for identification & validation

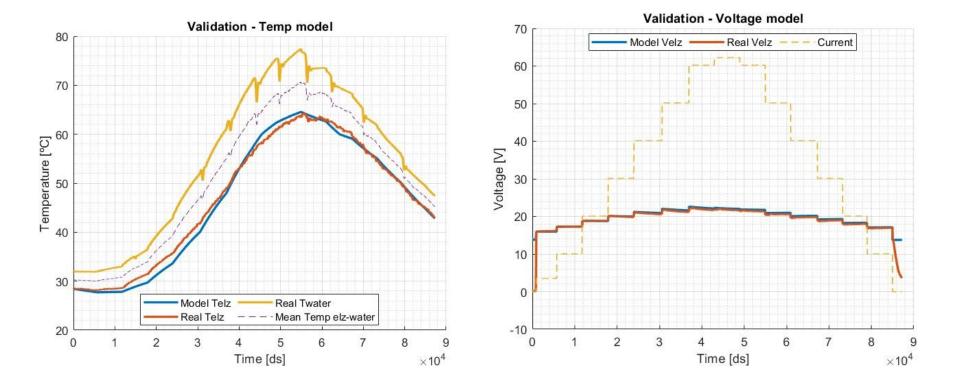
Time (s)	H2 Pressure (bar)	H2 Flow (Nl/min)	O2 Pressure (bar)	Water Temperature (°C)	Enviromental Temperature (°C)	Stack Temperature (°C)	Stack Voltage (V)	Stack Current (A)
0	2,551657	0,01762486	-0,0516974	31,993471	24,825102	28,478231	0,11534744	0,00823628
1	2,5519857	0,01758067	-0,05601	32,072838	24,749264	28,445021	0,11937767	0,00812791
						•••		
8725	6,1429033	0,03864089	0,01937729	47,402832	26,190796	43,021027	3,6212292	-0,0039556



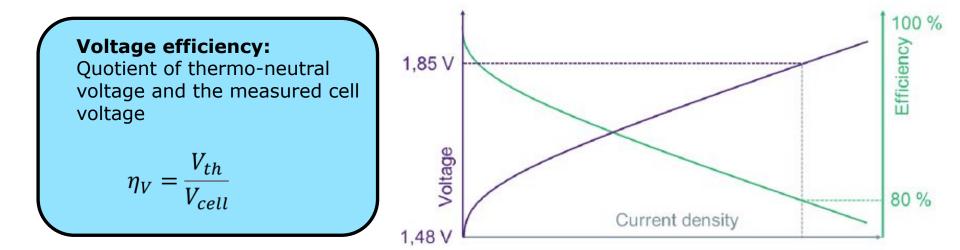
II Workshop INCT CAPE 202

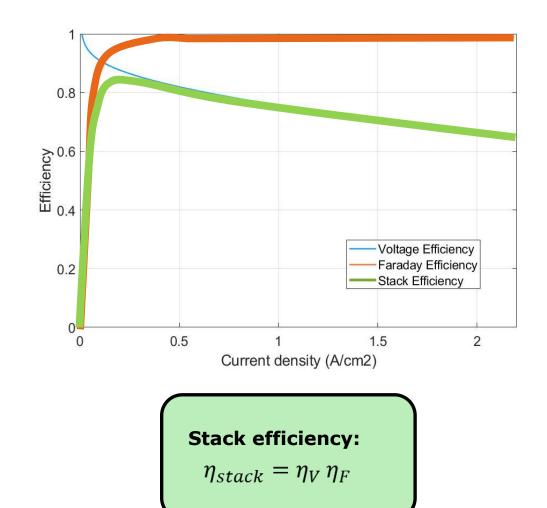

II Workshop INCT CAPE 202 Ridao

When the experimental data was obtained, a fan was activated which serves to cool the stack temperature. However, it is not stated how much heat is cooled by this fan, nor at what stack temperature it is activated. Therefore, a series of tests have been carried out in which two variables, Tcontrol and Qcontrol, have been created to optimise the temperature at which the fan is activated and the heat it cools.


Boundaries: Tcontrol (°C): 50 - 70; Qcool (W): 50 - 100

II Workshop INCT CAPE 202 Ridao


- Introduction
- Mathematical model of PEM electrolyzers
 - Static Electrochemical models
 - Thermal models
 - Identification
- Efficiency
- Degradation

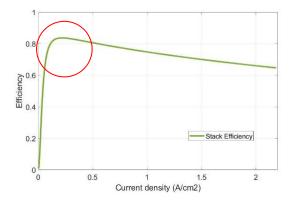

Voltage efficiency: Quotient of thermo-neutral voltage and the measured cell voltage

$$\eta_V = \frac{V_{th}}{V_{cell}}$$

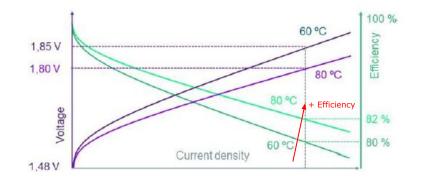
Faraday efficiency:

Ratio between the theoretical hydrogen quantity and the generated quantity of H_2

Due to H2 diffusion losses through the membrane,...



II Workshop INCT CAPE 2024



Why not simply operate at low current densities?

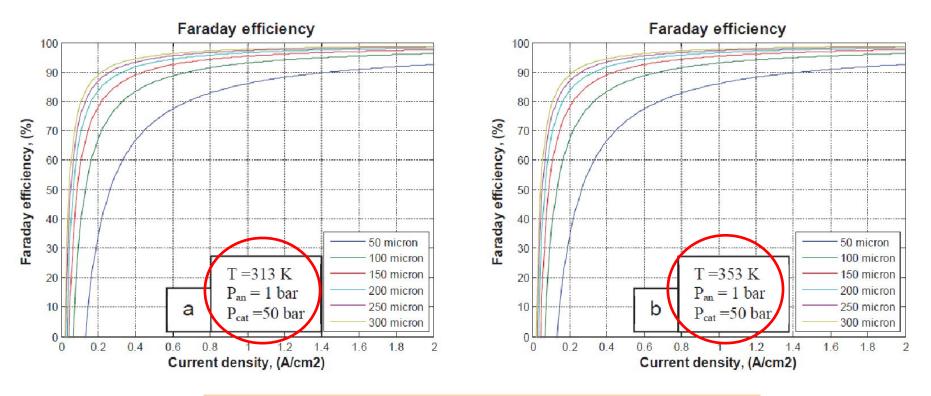
- The higher the current density, the higher the rate of hydrogen production.
- ✓ Specific costs for an electrolyzer increase at lower current density.
- The current density should be obtained with the objective of minimizing hydrogen production costs (the optimum between high-efficiency and low specific

Why not simply operate at higher temperatures?

- ✓ Temperature has a significant effect on ageing (longevity of an electrolyzer).
- The higher the temperature, the lower the service life.
- The correct operating temperature should be optimized with the objective of minimizing hydrogen production costs.
- The objective is to obtain an optimum balance between high efficiency and service life

CAPEX)

P. Lettenmeier . White paper I Efficiency - Electrolysis. Siemens-energy


II Workshop INCT CAPE 2024

Efficiency vs. operating conditions

Temperature has no significative effect on Faraday efficiency

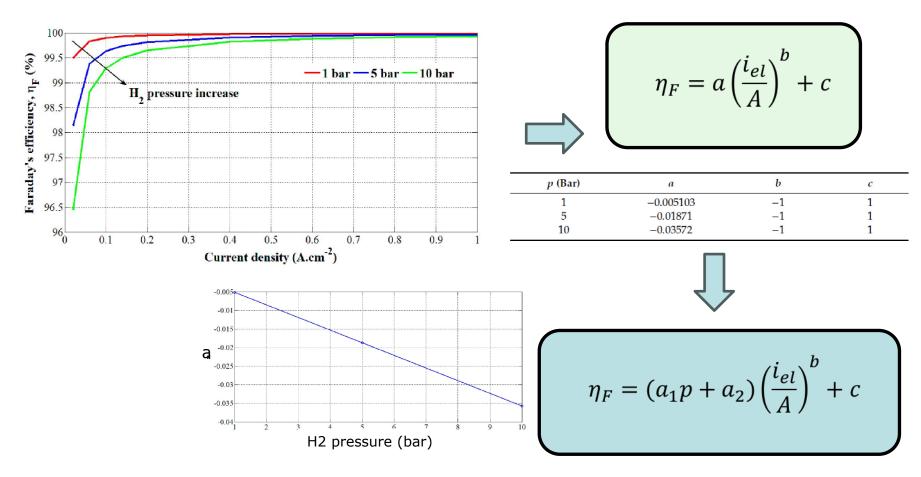
A. Salami et al. Numerical Modeling the Effect of Operating Variables on Faraday Efficiency in PEM Electrolyzer, Procedia Technology, Volume 26, 2016,

II Workshop INCT CAPE 2024

Efficiency vs. operating conditions

Faraday efficiency increase at low pressure..., but an external compressor is needed. Efficiency of the complete system need to be studied

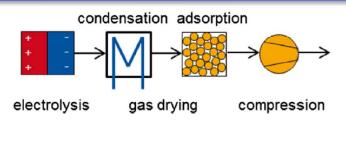
A. Salami et al. Numerical Modeling the Effect of Operating Variables on Faraday Efficiency in PEM Electrolyzer, Procedia Technology, Volume 26, 2016,



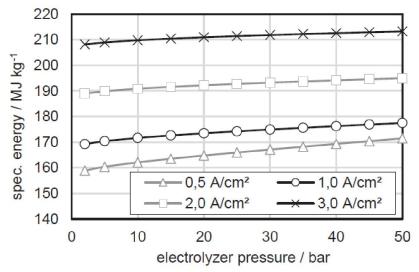
II Workshop INCT CAPE 2024

Typically, empirical approaches are used

Yodwong, B.; Guilbert, D.; Phattanasak, M.; Kaewmanee, W.; Hinaje, M.; Vitale, G. Faraday's Efficiency Modeling of a Proton Exchange Membrane Electrolyzer Based on Experimental Data. Energies 2020, 13.



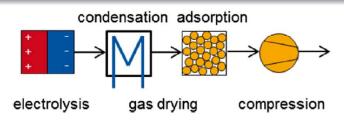
II Workshop INCT CAPE 2024

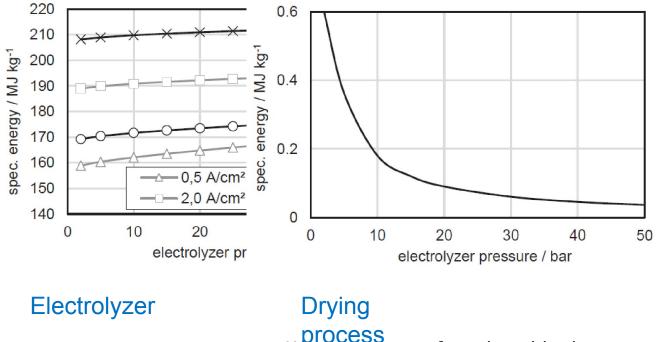


Efficiency of the complete system

Specific energy demand is defined as energy demand per amount of produced hydrogen

- ✓ Overvoltages increase with the current density, efficiency of production decreases.
- ✓ Faraday efficiency decrease with pressure, specific energy demand increases with pressure


G. Tjarks et al. Energetically-optimal PEM electrolyzer pressure in power-to-gas plants, Applied Energy, Volume 218, 2018.

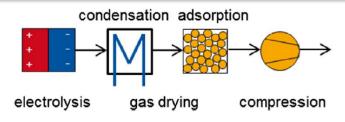


Efficiency of the complete system

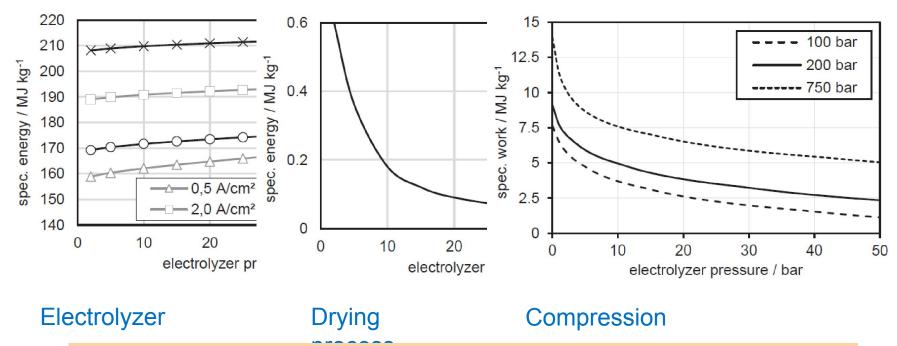
Specific energy demand is defined as energy demand per amount of produced hydrogen

✓ Water content of produced hydrogen decrease with electrolyzer pressure

G. Tjarks et al. Energetically-optimal PEM electrolyzer pressure in power-to-gas plants, Applied Energy, Volume 218, 2018.



II Workshop INCT CAPE 2024

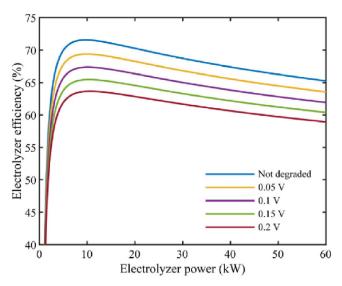


Efficiency of the complete system

Specific energy demand is defined as energy demand per amount of produced hydrogen

In several work, only electrolyzer and compression is considered for efficiency

G. Tjarks et al. Energetically-optimal PEM electrolyzer pressure in power-to-gas plants, Applied Energy, Volume 218, 2018.


- Introduction
- Mathematical model of PEM electrolyzers
 - Static Electrochemical models
 - Thermal models
 - Identification
- Efficiency
- Degradation

- One of the biggest challenges of PEM technologies is the high cost of production, which has to be addressed both by lowering material cost and by extending its lifetime.
- There are not significative mathematical models of the degradation
- There are several works where degradation is studied under different operation conditions.

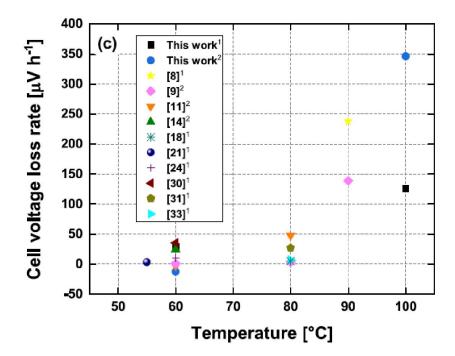
- Effect of degradation is observed as a voltage increment in the polarization curve.
- Typically, is measured in $\mu V/h$
- Degradation is highly dependent on operation conditions.

Conclusions of studies (power)

- In this study a P_{el} =60 kW is considered
 Maintaining operation: 600 W
- P_t=40 kW

Mode	
Maintaining operation (very low power)	1.5
Low power fluctuation (600 W – P_t)	50
Constant P _t	20
High power fluctuation (P _t - P _{el})	66
Constant high power (P _{el})	196

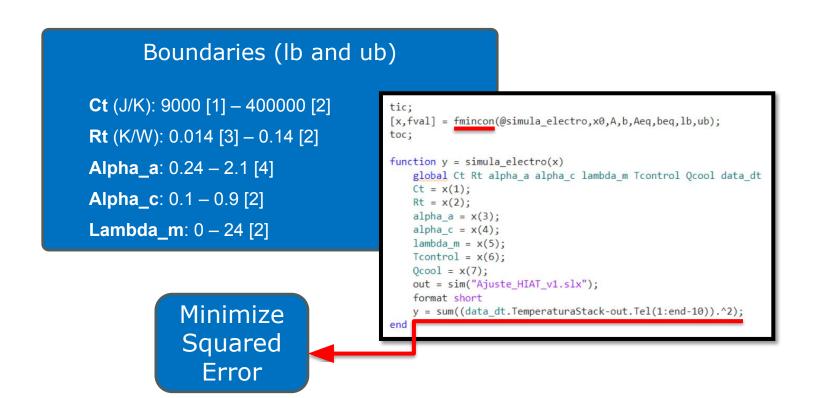
Xinyu Lu, et al. Optimization of power allocation for wind-hydrogen system multi-stack PEM water electrolyzer considering degradation conditions, International Journal of Hydrogen Energy, Volume 48, Issue 15, 2023



Conclusions of studies (temperature)

• Many experiment in literature, but no conclusive results

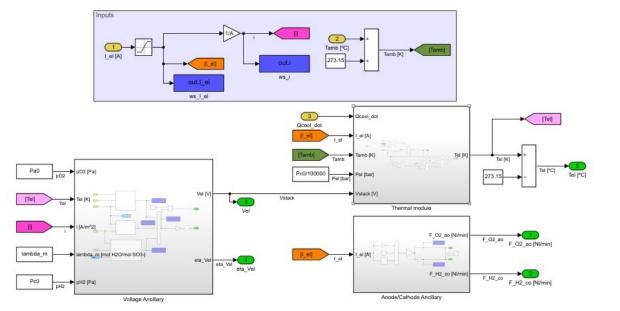
Steffen Garbe *et al.* Understanding Degradation Effects of Elevated Temperature Operating Conditions in Polymer Electrolyte Water Electrolyzers *Journal of The Electrochemical Society, Volume 168, Number 4, 2021*

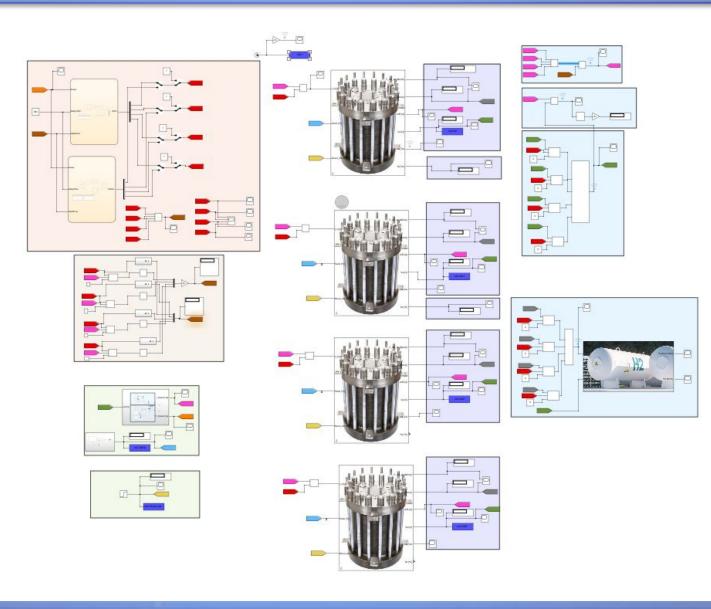

Muchas gracias!!

Muito obrigado!!

	Initial	1a	1b	2	3a	3b
Ct (J/K)	25000	16079	15231	16079	15701	16218
Rt (K/W)	0.25	0.1203	0.1156	0.1203	0.14	0.1339
Tcontrol (°C)	-	-	-	-	60	60
Qcool (W)	-	-	-	-	99.9686	65.536
Alpha_a	2	2	0.93025	0.93025	0.93025	2
Alpha_c	0.7	0.7	0.9	0.9	0.9	0.7
Lambda_m	9	9	13.7385	13.7385	13.7385	9
Time (s)	-	495.63	513.56	1519.46	623.42	1668.22

Time that fmincon expends to achive the optimal values of the parameters identified


	Initial	1a	1b	2	3a	3b	
	Error mean						
Temp	-4.1201	0.5606	0.3962	0.0197	-0.2452	0.4074	
Voltage	-0.46173	-0.5212	-0.9876	-0.9870	-0.9799	-0.5153	
	RMSE						
Temp	8.5824	1.3456	0.9930	1.2375	1.1679	1.1261	
Voltage	1.779	1.7907	2.1057	2.1049	2.1055	1.7894	



II Workshop INCT CAPE 2024 Ridao

OPALH2 and ODYELH2 Projects

