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Introduction

▶ This presentation focuses on monitoring tools of electrolyzers. The case study is
based on a PEM electrolyzer.

▶ Our approach is based on advanced mathematical models based on the laws of
physics.

A much more complex study is being developed by the PhD student Franthiescolly
Vieira de Carvalho supervised by Daniel F. Coutinho and co-supervised by me.

▶ Applications can be found in advanced model-based control/optimization method-
ologies and fault detection and isolation.
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Electrolyzer state estimation problem

Given, at each time instant t, measurements
of
▶ current
▶ tension

Estimate, at each time instant t, the
▶ Temperature
▶ Gradient of oxygen concentration
▶ Gradient of hydrogen concentration

https://www.energy.gov/eere/fuelcells/hydrogen-production-electrolysis
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Electrochemical reaction

▶ Operational voltage:

V = VNernst + Vact + Vohm + Vcon

▶ Equilibrium potential:

VNernst = E
0
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Mass and energy balances

▶ Anode side:{
∂tCO2 (t, z) = DO2 ∂zzCO2 (t, z) + SO2 (t),
∂zCO2 (t, 0) = 0,

∂zCO2 (t, ra) = − RT
DO2

i
4F

(t)

▶ Cathode side:{
∂tCH2 (t, z) = DH2 ∂zzCH2 (t, z) + SH2 (t),
∂zCH2 (t, 0) = 0,

∂zCH2 (t, rc) = − RT
DH2

i
2F

(t)

▶ Average temperature:

ρavcp
dT

dt
(t) =hcell(Tamb(t) − T (t))+

(V (t) − Utn)i(t)

Berasategi, J., et al. A hybrid 1D-CFD numerical framework for the thermofluidic assessment and design of PEM fuel cell and electrolysers. International
Journal of Hydrogen Energy, 52, 1062-1075, 2024.

García-Salaberri, P. A. 1D two-phase, non-isothermal modeling of a proton exchange membrane water electrolyzer: An optimization perspective. Journal of
Power Sources, 521, 230915, 2022.
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Dynamic model

▶ Defining the operator

A (t)

(
φ1
φ2
φ3

)
=

(
DO2 φ′′

1
DH2 φ′′

2
− hcell

ρavcp

)
, ∀(φ1, φ2, φ3) ∈ Dom(A (t)),

Dom(A (t)) =
{

(φ1, φ2, φ3) ∈ (H2(0, r))2 × R| φ′
1(0) = φ′

2 = 0, φ′
1(r) = −

RT

DO2

i

4F
,

φ′
2(r) = −

RT

DH2

i

2F

}
.

Then, the system can be written into the following abstract equation:

ẋ(t) = A (t)x(t) + S(t),
x(0) = x0,

with S = (SO2 , SH2 , hcell/(ρavcp)(Tamb(t) + (V (t) − Utn))i(t)).
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A prime on state estimation

At each time t construct an estimate of the state by only measuring the output y(t) and
input u(t).
▶ Open-loop observer: Build an artificial copy of the system, fed in parallel by with

the same input signal u(t)

▶ The copy is a numerical simulator reproducing the behavior of the real system



Open-loop observer

▶ The dynamics of the real system and of the numerical copy are

ẋ(t) = Ax(t) + Bu(t) (True process)
˙̂x(t) = Ax̂(t) + Bu(t) (Numerical copy)

▶ The dynamics of the estimation error x̃(t) = x(t) − x̂(t) is

˙̃x(t) = Ax(t) + Bu(t) − Ax̂(t) + Bu(t) = Ax̃(t)

and then x(t) = eAtx(0).



Open-loop observer

The estimation error is x(t) = eAtx(0). This is not ideal, because
▶ The dynamics of the estimation error are fixed by the eigenvalues of A and cannot

be modified.
▶ The estimation error vanishes asymptotically if and only if A is asymptotically

stable

Note that we are not exploiting y(t) to compute the state estimate x̂(t)!



Luenberger observer

▶ Luenberger observer: Correct the estimation equation with
a feedback from the estimation error y(t) − ŷ(t)

˙̂x(t) = Ax̂(t) + Bu(t) + L(y(t) − ŷ(t))︸ ︷︷ ︸
feedback on estimation error

where L is the observer gain
David G.

Luenberger
(1937-)



Luenberger observer

▶ The dynamics of the state estimation error x̃(t) = x(t) − x̂(t) is

˙̃x(t) = Ax(t) + Bu(t)Ax̂(t) + Bu(t) − L(y(t) − ŷ(t)) = (A − LC)x̃(t)



Eigenvalue assignment of state observer

Theorem
If the pair (A, C) is observable, then the eigenvalues of (A − LC) can be placed arbitrarily.

Proof:
▶ If the pair (A, C) is completely observable, the dual system (A′, C′, B′, D′) is

completely reachable.
▶ Then we can design a compensator K for the dual system and place the

eigenvalues of (A′ + C′K) arbitrarily.
▶ The eigenvalues of (A′ + C′K) are the same of its transpose (A + K′C).
▶ Define L = −K′. The proof is complete.

MATLAB

» L = acker(A’,C’,P)’;
» L = place(A’,C’,P)’;



Example of observer design

▶ We want to design a state observer for the continuous-time system in state-space
form

ẋ(t) =
(

−1 0
1 −1

)
x(t) +

(
2
0

)
u(t),

y(t) =
(

0 1
2

)
x(t).

▶ We want to place the poler of the observer in {−4, −4}.
▶ Let L = (ℓ1, ℓ2) be the unknown observer gain.
▶ Write the generic state estimation matrix

A − LC =
(

−1 0
1 −1

)
−
(

ℓ1
ℓ2

)(
0 1

2

)
=
(

−1 − 1
2 ℓ1

1 −1 − 1
2 ℓ2

)



Example of observer design (cont’d)

▶ The characteristic polynomial of the observer is

det(λI − A + LC) = λ2 +
(

2 + 1
2 ℓ2

)
λ + 1

2 ℓ2 + 1
2 ℓ1 + 1.

▶ Impose the polynomial equals the desired one (λ + 4)2 = λ2 + 8λ + 16.
▶ Solve the linear system of equations in ℓ1, ℓ2 and get

ℓ1 = 18, ℓ2 = 12.

▶ The resulting Luenberger observer is

˙̂x(t) =
(

−1 −9
1 −7

)
x̂(t) +

(
2
0

)
u(t) +

(
18
12

)
y(t)



Example of observer design (simulations)
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Comparison of different observer gains

Response from initial conditions

x(0) =
(

−1
1

)
, x̂(0) =

(
0
0

)
, for u(t) = 0.1

A fast observer often implies large estima-
tion errors in the transient
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Back to our electrolyzer state estimation problem

▶ It seems that the a Luenberger observer design cannot be directly applied into our
problem.

▶ Note that we are not measuring an state directly, and therefore we would have

ẋ(t) = A (t)x(t) + S(t) + L

(
I(t)

V (t) − V̂ (t)

)
︸ ︷︷ ︸

injection terms

,

There is no feedback on the estimation error!
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Exploring the temperature dynamics and the operational voltage

▶ Recall that the temperature dynamics and the operational voltage are given by

ρavcp
dT

dt
(t) =hcell(Tamb(t) − T (t)) + (V (t) − Utn)i(t),

V (t) =VNernst(t) + Vact(t) + Vohm(t) + Vcon(t)

▶ The goal of is to obtain an inversion of the function V with respect to the
concentrations.

▶ First, we simplify the average temperature to derive an expression for T only in
terms of time, ambient temperature and current:

ρavcp
dT

dt
(t) =χ(t)T (t) + ω(t)

The terms in ω are obtained by substituting T by Tamb and cco2 and cH2O by their relations
with the current.

▶ Then, it holds that

T (t) = T (0)e
1

ρavcp

∫ t

0
χ(τ)dτ + 1

ρavcp

∫ t

0
e

1
ρavcp

∫ t−τ

0
χ(s)ds

ω(τ)dτ



Exploring the temperature dynamics and the operational voltage

▶ Substituting Ť (t) ≜ T (t, i(t), Tamb(t)) into the operational voltage equation, we
obtain

V̌ (t) ≜ V (t, Ť (t), CH2 , i(t)) ≜ g(t, CH2 , i(t)).

▶ As long as g is a bijection with respect to CH2 , uniformly in i, one could invert it to
obtain the concentration as a function of the measurements (V (t), i(t)):

CH2 (t, r) = h1(t, V (t), i(t)).

▶ A similar procedure can be applied to obtain CO2 (t, r) = h2(t, V (t), i(t)).



Electrolyzer Luenberger observer

▶ Now, a Luenberger state observer can be designed:

˙̂x(t) = Ã(t)x̂(t) + S(t) + L

(
CO2 (t, 1) − ĈO2 (t, 1)
CH2 (t, 1) − ĈH2 (t, 1)

)
▶ Error dynamics

˙̃x(t) = Ã(t)x̃(t) + Lỹ(t)



Desired error dynamics

▶ Using the observer gains, we want to map the error dynamics into the following
exponentially stable system

˙̃w(t) = Aw̃(t)

with

A

(
φ1
φ2

)
=
(

DH2 φ′′
1 + λ1φ1

DO2 φ′′
2 + λ2φ2

)
, ∀(φ1, φ2) ∈ Dom(A),

Dom(A) =
{

(φ1, φ2) ∈ (H2(0, r))2; φ1(0) = φ2(0) = 0, φ′
1(r) = −1

2φ1(r),

φ′
2(r) = −1

2φ2(r)
}

.

▶ λ1, λ2 is a free parameter to be chosen, which determines the convergence rate of
the observer state to the real system.

▶ If

0 < λ1
DH2

4 0 < λ2
DO2

4

then for any initial condition w̃0 ∈ L2(0, r), the w̃-system is exponentially stable.



Gains design

▶ Using the backstepping approach it is possible to obtain an explicit expression for
the gains:

l1 = −λ1r1

2
√

λ1(r2
1 − 1)

(
I1(
√

λ1(r2
1 − 1)) − 2λ1√

λ1(r2
1 − 1)

I2(
√

λ1(r2
1 − 1))

)
,

l2 = −λ2r2

2
√

λ2(r2
2 − 1)

(
I1(
√

λ1(r2
2 − 1)) − 2λ1√

λ1(r2
2 − 1)

I2(
√

λ1(r2
2 − 1))

)
,

l10 =1
2(3 − λ1), l20 = 1

2(3 − λ2)



Summary of the algorithm

1 - Given λ1, λ2, compute, in an off line fashion, the observer gains::

l1 =
−λ1r1

2
√

λ1(r2
1 − 1)

(
I1(
√

λ1(r2
1 − 1)) −

2λ1√
λ1(r2

1 − 1)
I2(
√

λ1(r2
1 − 1))

)
,

l2 =
−λ2r2

2
√

λ2(r2
2 − 1)

(
I1(
√

λ1(r2
2 − 1)) −

2λ1√
λ1(r2

2 − 1)
I2(
√

λ1(r2
2 − 1))

)
,

l10 =
1

2
(3 − λ1), l20 =

1

2
(3 − λ2)

Then, online do:

2 - Measure V and i;

3 - Compute the observed states by solving the differential equations;
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Final comments

▶ The observer is characterized by only two tuning parameters – thereby making cali-
bration significantly simpler than KF-based estimators, for example.

▶ The internal average temperature can be monitored in an open-loop framework.

▶ Some simplifications were necessary for the proposed design.

▶ Directions for future work include the design of an observer for the hydrodynamics
of the plant.



Muchas gracias!

Obrigado!
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